
*ABA and The Combinatorics of
Morphological Features

Jonathan David Bobaljik*
University of Connecticut &
Leibniz-Zentrum Allgemeine
Sprachwissenschaft (ZAS)

Storrs, CT, USA & Berlin, Germany

Uli Sauerland†‡
Leibniz-Zentrum Allgemeine
Sprachwissenschaft (ZAS)

Berlin, Germany

DRAFT, February 2017

Abstract In several three cell paradigms, it has been observed that one log-
ically conceivable pattern – ABA under some arrangement of cells – is unat-
tested. Existing approaches assume that such *ABA generaizations provide
evidence for feature inventories which are restricted to features that stand in
containment relations. We present a novel approach to *ABA generalizations
that derives from general properties of feature-based morphology. To this
end, we develop a formal account of the widespread view that morphological
paradigms derive from ordered rules that relate abstract features from an
inventory to morphological exponents. We demonstrate that without any
further assumption the feature-based view restricts the space of typological
patterns. We show furthermore that the feature-based theory derives *ABA
generalizations not only from assuming a specific inventory and Pāṇinian rule
order, but alternatively from the assumption that the inventory of features
must be minimal if extrinsic rule order is allowed. Furthermore we discuss
which explanation might be correct for actual cases of *ABA constraints,
and we explore the consequences of the feature-based general approach for
paradigms with more than three cells.

Keywords: features, morphology, combinatorics, syncretism, typology
* jonathan.bobaljik@uconn.edu
† uli@alum.mit.edu
‡ Authors are listed alphabetically – both authors are equally first authors.

1



2 Bobaljik & Sauerland

1 Introduction
One of the most interesting and difficult questions in research on language
lies in formally characterizing the class of possible grammars. One aspect
of this challenge asks whether there are constraints on grammars of a gen-
eral, abstract nature, and in turn, whether these constraints are specific to
language or instantiations of even broader, domain-general constraints on cog-
nitive systems, with manifestations observable elsewhere. For example, some
progress has been made in syntax on the basis of Formal Language Theory
and the Chomsky hierarchy (Chomsky 1956) for the analysis of sets of string
sequences. We aim to contribute to the development of a similarly general
perspective for morphology, particularly with respect to morphological fea-
tures, i.e. the features that underlie the variation in how different concepts are
grouped across languages as evidenced by exponence by the same form. The
architecture of feature-based morphological systems predicts that only certain
patterns of variation are possible. In this paper, we address *ABA general-
izations from this perspective. We show that *ABA generalizations can be
derived from the feature-based architecture in conjunction with a minimality
assumption. We furthermore argue that such a derivation may be plausible
for some cases of an *ABA generalization, but not for others.

The term *ABA generalization refers to morphological patterns in which,
given some arrangement of the relevant forms in a structured sequence, the first
and third may share some property “A” only if the middle member shares that
property as well. If the middle member is distinct from the first, then the third
member of the sequence must also be distinct. Bobaljik (2012) demonstrates
that a *ABA generalization holds for adjectival suppletion in the sequence
positive-comparative-superlative: across a large cross-linguistic sample, one
finds ABB patterns such as good-better-best, where the comparative and su-
perlative share a root be(t)- distinct from the positive, but what is not found
is an ABA pattern: *good-better-goodest, in which the positive and superlative
share a root, distinct from the comparative. Similar *ABA effects have been
noted in extensive studies of case syncretism (Caha 2009), suppletion for both
case and number in pronouns (Smith et al. 2016), Germanic verbs and par-
ticiples (see Wiese 2008 on German, and class material cited by Starke 2009
on English), and in other domains.

In one way or another, existing accounts of these generalizations have ar-
gued that the *ABA effect arises as a result of nesting or containment relations
among features, along with the assumption that linguistic rules are arranged
such that a more specific rule takes precedence over (bleeds) a more general
one, the so called Elsewhere or Pāṇinian ordering (Kiparsky 1973, 1979). For
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the example above, Bobaljik argues that the representation of the superla-
tive properly contains the representation of the comparative, which in turn
properly contains the basic form of the adjective, as in (1).

(1) a. Positive: [adjective]
b. Comparative: [[adjective] comparative]
c. Superlative: [[[adjective] comparative] superlative]

If a language has a rule of suppletion such as good 7→ be(t)- / compara-
tive, that rule will block the basic root good in both the comparative and the
superlative, in virtue of being the most specific rule compatible with the con-
text. Nothing forces the comparative and superlative to share a root – Latin
uses an ABC pattern (bonus-melior-optimus) with a distinct root in each of
the three grades, but the containment relation in (1) ensures that the ABA
pattern is inderivable (except as a case of accidental homophony).

In this paper, we discuss some results of an ongoing project studying the
combinatorial properties of rule systems that describe syncretism in morpho-
logical paradigms. Although that project did not set out to examine *ABA
patterns per se, it turns out that *ABA emerges as a prediction in certain
contexts, as a consequence of the assumption that Universal Grammar selects
the minimal feature inventories needed to generate a paradigm of a given size.
We believe this is interesting, since the *ABA restriction emerges without the
containment/nesting hypothesis that characterizes other accounts. Intuitively,
*ABA emerges when a three-element sequence is the product of two overlap-
ping features and their intersection: in the sequence (“paradigm”) ⟨x,y,z⟩, if x
and y share a feature, and y and z share a feature, but x and z do not share
a feature, then even without a total containment relation among the features,
it follows that the patterns ABC, ABB, and AAB are generable, but ABA is
excluded. Most of the paper is devoted to showing that this state of affairs is
not only formally possible, but is in fact forced in some contexts by plausible
minimal assumptions about feature logics. While this approach seems implau-
sible for some *ABA patterns (we think there are good reasons independent
of suppletion to assume that superlatives contain comparatives), we wish to
bring this to the table as a possible alternative in other instances.

Although we have identified the *ABA result as an important point of con-
tact with other current theoretical morphosyntax work, a significant portion
of this paper will be devoted to presentation of a framework where classes
of morphological models can be formally discussed, and where the effects of
individual assumptions can be explicitly computed, for example, in terms of
their restrictiveness. Alongside the *ABA result, we also discuss the effect of
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imposing Pāṇinian ordering on feature models, and show that its effects are
comparatively weak in certain classes of model.

2 Paradigm-Partitions, Features, and Sequences
We start by recognizing that a paradigm is a list of cells, <x,y,z,…>, where
each cell is a pairing of a linguistic form and a unique property or combination
of properties. We take the order of the list to be arbitrary – paradigms in our
view are descriptive devices and have no structure beyond that imposed by
their constituent features.1

Syncretism is the observation that different cells in a paradigm may map
to the same surface form.2 Since we are interested in syncretism, we only
care whether the cells of a paradigm are mapped to the same surface form or
different ones. Abstracting away from the actual forms, x, y, z and so on, leaves
us with a partition of a set of size n: the set of cells that may be mapped to
linguistic forms for some linguistic entity, such as a given lexeme. The number
of distinct partitions for an n-celled paradigm is the Bell number: Bn. For a
three-celled paradigm, the B3 = 5 distinct partitions are listed in (2):

(2) AAA, AAB, ABB, ABA, ABC

In medium- to large-scale studies of syncretism (Cysouw 2003; Bobaljik 2012;
Baerman et al. 2005), it is commonly observed that only a subset, often only
a very small subset, of the theoretically distinct partitions are attested. For
example, Cysouw (2003, 2010) considers a sample of person paradigms in 250+
languages, characterized as an 8-cell paradigm space, but finds only 60-some-
odd distinct partitions from among the logically possible B8 = 4,140. The
*ABA generalizations, mentioned above, make the same point: over some size-
able range of data, where 5 patterns are possible, only four are actually found

1 Technically, a list is ordered, and to present a paradigm on a printed page its cells must be
ordered too. But this is a presentational necessity – the cells of a paradigm are not ordered,
regardless of the one or two-dimensional arrangement we use to present it in the follow-
ing. Technically, the general perspective views a paradigm as a mapping from a finite set
{X ,Y,Z, . . .} of n elements to linguistics forms such as x, y, and z. In the following, we assume
that there is a conventional enumeration of the elements of a paradigm {X ,Y,Z, . . .}, and
thereby the paradigm is equivalently the finite set is {1,2, . . . ,n}. This assumption doesn’t
lose any generality and our approach is compatible with any one- or multi-dimensional
arrangement of a paradigm.

2 An important, but in practice difficult, distinction to draw is the difference between acci-
dental homophony and systematic syncretism; see Harbour (2008); Sauerland & Bobaljik
(2013).
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in the world’s languages: AAA, AAB, ABB, and ABC, but not ABA. Typ-
ically, studies of syncretism seek explanations for such typological patterns
— i.e. develop theories that predict only a subset of partitions to be possi-
ble. We address exactly this problem but one level of generality higher —
we investigate how general assumptions about morphological analysis restrict
which subsets of partitions can arise as typological predictions. For example,
we show that a restriction to the partition-set {AAA, ABB, ABC} cannot be
derived solely within our general assumptions, while the *ABA condition can
be derived.

The general class of morphological models we explore is feature-based mod-
els. Such models have been prominent in morphological analysis, but their
restrictiveness has not been investigated formally. At its most basic, a feature
is a name for individual cells or sets of cells in a paradigm. With reference to
an n-celled paradigm, we write a feature as f indexed with a binary vector,
where 1 indicates the cell or cells that feature names. Thus, one way of naming
features that generate a 3-celled paradigm is as in (3), with a unique feature
naming each cell.

(3) a. f100
b. f010
c. f001

We define a model of a given paradigm as having two components: an inventory
of features, and Rules of Exponence, which relate features to form. Alongside
the trivial feature inventory in (3), we may state the Rules of Exponence in (4)
(here and throughout, capital letters are to be understood as variables ranging
over phonological forms):

(4) a. f100 7→ A
b. f010 7→ B
c. f001 7→ C

A model is grammar fragment, generating one paradigm. In the trivial
example just considered, the model in (3) and (4) generates the paradigm
<A,B,C>, a three-celled paradigm that is maximally differentiated, i.e., in
which each cell has a distinct form.

Maximal differentiation is by no means the only way in which an n-celled
paradigm space may be partitioned. Characterizing other partitions requires
features that name (contain) more than one cell of the paradigm such as f110.
But when we specify rules of exponence for such features as well, more than
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one rule of exponence may be applicable to one cell, requiring the specification
of rule order in the general case.

Two general logical operations on features are intersection and union (or
conjunction and disjunction). Formally, both can be straightforwardly defined
for the vector representation of features: the intersection of features f and f ′

contains a 1 in position m if and only if both f and f ′ have value 1 in position
m. But the union of features f and f ′ contains a 1 in position m if and only if
either f or f ′ or both contain a 1 in position m. We will assume below that
conjunction (intersection) of features is available in language, while disjunction
(union) is not.

For illustrative purposes, we show in the next paragraphs how the standard
approach to the *ABA generalization in our current terms. As noted above,
the model in (3)-(4) generates a single partition of the 3-celled space, namely
<A,B,C>. In fact, from the inventory in (3), that is the only complete partition
that may be generated. (By complete, we mean that a phonological form is
assigned to every cell of the paradigm space.) Using only rules of exponence
of the format in (4), only maximal differentiation is possible, because the cells
share no features in common. Appeal to a “default” form implicitly invokes
an additional feature, shared by all the cells: f111, and there is no such feature
in (4).3

The alternative inventory in (5) represents the standard approach to *ABA
patterns in this notation:

(5) a. f001
b. f011
c. f111

This encodes the same relationship among paradigm cells as in (1). One feature
is shared by all three cells (this constitutes the default), one by two, and one
is unique to a single element. On the assumption that the feature inventory
in (5) remains constant across languages, but that the Rules of Exponence
may vary from language to language or even from lexeme to lexeme, a variety
of different paradigms (partitions) may be generated from this single, shared
inventory of features. Rules of Exponence for two models sharing the inventory
in (5) are given in (6) and (7).

(6) a. f001 7→ C

3 Feature intersection is vacuous for the inventory in (3). If feature union were admitted, then
any partition could be described from the inventory of features in (3) plus their unions. More
generally, allowing feature union (as in Stump 2016) would have the effect that all partitions
can be generated by any complete feature inventory.
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b. f011 7→ B
c. f111 7→ A

(7) a. f011 7→ B
b. f111 7→ A

As the reader may verify, the model in (5) + (6) derives the maximally dif-
ferentiated, ABC paradigm, one in which each cell is distinct from the others.
The model consisting of (5) + (7) derives an ABB paradigm, with syncretism
of the last two cells. In these models, rules of exponence are ordered sequen-
tially (read by convention from top to bottom) – the first rule of exponence
specified for any given cell must apply to that cell. In both (6) and (7), the
final exponent (A) is the default – in principle it is compatible with all three
cells – but it does not appear in those cells because the rule introducing the
default is ‘blocked’ by the application of the more specific rules.

We represent the feature-based morphological analysis of a paradigm in a
specific language more compactly as a sequence of features. (8-a) represents
the ordered rules in (6) as a sequence and (8-b) that in (7). These examples
also give the partition that each sequence generates.

(8) a. ⟨ f001, f011, f111⟩: ABC
b. ⟨ f011, f111⟩: ABB

Some further examples of sequences are shown in (9). (9-a) and (9-b) are two
sequences of the same features, but in the opposite order. (9-c) is a sequence
of three features, but the last feature is redundant.4 The sequence in (9-d)
is incomplete – no rule of exponence assigns a feature to the third cell of the
paradigm.

(9) a. ⟨ f110, f011⟩: AAB
b. ⟨ f011, f110⟩: ABB
c. ⟨ f110, f011, f010⟩: AAB redundant
d. ⟨ f100, f010⟩: AB_ incomplete

In the following, we normally understand sequence to refer only to complete,
redundancy-free sequences.

4 We can characterize redundancy abstractly as follows: In a feature sequence S the feature
in position j is redundant, if the intersection of S j with the union of the features S1, . . . ,S j−1
is identical to S j. If no feature in a sequence is redundant, we call it redundancy-free.
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2.1 Pāṇinian Sequences
A point we return to in some detail below is that rule ordering may be extrin-
sic (a stipulated language-particular order) or intrinsic, i.e., such that more
specific rules automatically bleed more general rules. A specific formulation of
the intrinsic Pāṇinian ordering principle or Elsewhere Condition is as in (10)
(after Kiparsky 1973:

(10) If two (incompatible) rules R1, R2 may apply to a given structure, and
the context for application of R1 is a (proper) subset of the context for
that of R2, then R1 applies and R2 does not.

This concept translates to our setup as follows:

(11) A (redundancy-free) sequence S is Pāṇinian if and only if any redundancy-
free permutation of S yields the same partition as S.

Consider which of the sequences introduced in (9) satisfy (11). Since (9-a) and
(9-b) are permutations of one another and yield different partitions, neither of
them is Pāṇinian. (9-c) cannot be a Pāṇini-sequence since it isn’t redundancy-
free. But the redundancy-free sequence in (12-a) is Pāṇinian because it and its
only redundancy-free permutation in (12-b) yield the same partition: ABC.
The permutation (9-c) and three others contain a redundant feature.

(12) a. ⟨ f001, f011, f110⟩: ABC
b. ⟨ f001, f110, f011⟩: ABC

For Pāṇini-sequences the order of the sequence is redundant. Hence it is suffi-
cient to represent Pāṇinian sequences as an unordered set, and we’ll sometimes
also use the term Pāṇinian set for a set S of features such that any redundancy-
free sequence of all elements of S is Pāṇinian.

As example (9-a), the set of f110 and f011 illustrates, there are sets of
features that don’t allow any Pāṇinian sequences, but allow ordered-sensitive
feature sequences. Now, all traditional analyses allow for Rules of Exponence
to make use of intersection. Thus, if fa and fb are in an inventory, then fa ∩
fb 7→ A is a well-formed Rule of Exponence. We adopt this wide-spread view in
following, and assume that the intersection of features is generally available, as
noted above. One consequence of this that, if a feature set allows the formation
of a valid oder-sensitive sequence, than there is also a valid Pāṇinian sequence
from that inventory. Specifically from f110 and f011, a valid Pāṇinian sequence
is ⟨ f110 ∩ f011, f110, f011⟩. But note that this sequence doesn’t generate the
partition AAB as (9-a) does, but only the sequence ABC. For this reason
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(among others) we will examine in some detail below the consequences of
assuming either that extrinsic ordering is allowed, or that grammars (models)
are limited to Pāṇini sets.

As noted, we assume in the following that apart from intersection, no other
algebraic operation on features is available.5

2.2 Partition Sets
We may now identify another concept that will be useful throughout this
article. For any feature inventory I, the Partition Set of I is the set of all
partitions that may be generated from I.

Generation of Partitions can either be understood as using extrinsically
ordered sequences or as using only Pāṇinian sequences. We introduce the
abbreviation OPS and PPS for these two concepts of Partition Set.

(13) a. The Order-Partition-Set (OPS) of Inventory I is the set of all par-
titions P such that there is an m ≥ 1 and a (complete, redundancy-
free) sequence of features ⟨ f 1, . . . , f m⟩ drawn from the closure of I
under intersection that generates the partition P.

b. The Pāṇini Partition-Set (PPS) of Inventory I is the set of all
partitions P such that there is an m≥ 1 and a Pāṇinian sequence of
features ⟨ f 1, . . . , f m⟩ drawn from the closure of I under intersection
that generates the partition P.

As we have shown, the OPS of (3) is just <ABC> and since inventory (3) is
itself Pāṇinian, this is also its PPS. The discussion of (6) and (7) shows that
the OPS of (5) contains (at least) ABC and ABB. Moreover, ABA is not in
the partition set of (5). That is, regardless of rule order, no sequence using
only the features in (5) will generate an ABA pattern from the inventory in (5)
(except as an instance of accidental homophony). For inventory (5), the PPS
is again the same as its OPS. In one way or another, the works cited above
therefore take the absence of ABA patterns in the domains they investigate
to indicate that the underlying features must be organized into the kind of
monotonic containment relations represented in (5).

For the inventory of features in (12) the OPS and PPS differ. The only
Pāṇinian sequence possible from these three features is the one shown in (12)
generating the partition ABC. Hence the PPS contains only ABC. But the

5 The restriction to intersection is implicit in a great deal of formal morphological theory.
There are approaches, such as Stump (2016), which allow other Boolean operators in the
construction of complex features.



10 Bobaljik & Sauerland

two non-Pāṇinian sequences ⟨ f011, f110⟩ and ⟨ f110, f011⟩ are both complete, and
therefore the OPS of the inventory (12) is the set { ABC, AAB, ABB }.6

In this way, we see rather explicitly the general logic that relates typo-
logical generalizations to conclusions about features in universal grammar. In
large scale investigations of syncretism in a given domain (case, or number,
or adjectival gradation) the data we have are the attested partition sets. The
*ABA generalization is a gap: in some domain, one logically possible partition
is not contained in the attested partition sets. Feature-based explanations
ask at one level what the feature inventory might be, such that ABA is not
included in its paradigm set. At a second, higher level, we also ask whether
feature-based explanations can predict any paradigm set as an OPS or PPS
for some set of features.

In the following, we use the notation introduced here to explore the conse-
quences of various kinds of formal restrictions one could conceivably apply to
models of this sort (inventories of features and associated rules of exponence).
We do so in the first instance entirely in the abstract, with no connection to
substantive features or empirical data. Our goal is to better understand some
of the formal properties of feature logics, and to compare the ways in which
various intuitively plausible assumptions do and do not restrict the combina-
torics.

2.3 Restricting the hypothesis space
One thing our notation calls attention to is that, absent any prior assumptions
about the content of features, the number of possible features that can be
defined grows quickly. For a paradigm of n cells, there are 2n − 1 non-empty
features that may be defined. For a three cell paradigm, the 7 definable features
are these:

(14) f100
f010
f001
f110
f101
f011
f111

If features could be freely chosen to form inventories, then 128 distinct feature
inventories could in principle be constructed from these features (including

6 It is generally the case that the PPS of an inventory must be a subset of its OPS.



11

the empty set). As we have seen above, from each inventory, a number of
distinct models can be constructed. That is, each inventory can be mapped
to one or more sequences, thus yielding a variety of partition sets. If rule
ordering is unconstrained, then from a single inventory with n features, there
are n! distinct sequences that may be so constructed (although some number of
these will be redundant). The number of possible models (and thus grammars)
thus quickly becomes astronomical, and we suggest it is therefore important to
ask whether there may be some universal constraints that drastically restrict
the classes of possible models to be considered. Thus, we will spend a fair part
of the discussion that follows discussing the combinatorics involved.

We will approach this as follows: Using the understanding of features,
paradigms, and models outlined above, we will set out to explore in quantita-
tive terms various conditions that may be imposed, and show explicitly how
they do and do not restrict the space of possibilities. Many of the numeri-
cal results are non-obvious, and we provide the code in on-line supplemental
materials for this paper.

Here, we define briefly the two conditions that will be central in the inves-
tigation that follows. Before proceeding to details, we show how various other
conditions can be defined. Our formalism allows us, at least in principle, to
selectively add or subtract conditions in order to be able to accurately examine
the consequences of any particular set of assumptions.

2.4 Minimal Valid Inventory
We now define two formal conditions, which we suggest are a priori plausible
conditions to restrict the class of possible inventories, and whose consequences
we work through in detail below.

The first, basic condition is that an inventory be valid.

(15) An inventory I is valid for a paradigm P iff there exists a model M
including I that generates the maximally differentiated partition of P.

The maximally distinct partition of a paradigm (space) is the partition in
which each cell is distinct from every other cell. In other words, for a three
cell paradigm, a valid inventory is one for which there is some set of rules that
will derive ABC. Note that Validity is a property of inventories, not models
(grammars). The Rules of Exponence in (6) demonstrate that (5) is a valid
inventory, but we do not require that every grammar (model) generate ABC;
syncretism by definition precludes there being such a requirement for every
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model.7 The model constituting (5)+(7) is perfectly well formed (and well
attested).

Validity is related to another condition: completeness, which we have men-
tioned above. Completeness is a condition on sequences (and thus derivatively
on models):

(16) A sequence S is complete with respect to a paradigm P iff S generates
a form (possibly zero) for every cell in P.

The more interesting condition on inventories is Minimality:

(17) An inventory I constitutes a Minimal Valid Feature Inventory for some
paradigm P iff
a. I is valid for P, and
b. there is no alternative I′ s.t., I′ is also a valid inventory for P and

I′ has fewer features than I

In the next sections, we will work through these conditions for various sizes
of paradigms, starting with 2-celled and then 3-celled paradigms. One finding
in this paper is that the two simple assumptions just noted – that inventories
use the minimal number of features to describe a paradigm space – have the
curious effect that in certain paradigm spaces, notably those with three cells,
certain patterns of syncretism become unstatable. In a sense to be made clear
below, ABA patterns of a certain type are indescribable. This result is of
interest, because it arises without the nesting/containment assumption that
plays a central role in other treatments of *ABA generalizations (Bobaljik
2012; Caha 2009; Starke 2009). Another result is a curious pattern in the
nature of the restrictiveness that these assumptions create.

Because of the way we have defined features and inventories, intersection
intersects with Minimality in a non-trivial fashion. Intersection, like rule or-
dering, allows for exponents that do not directly conform to features that are
in the inventory. If an inventory consists only of f110 and f101, a rule can be
stated referring to: f110 ∩ f101 = f100. While this generates an exponent that
only expresses the first cell, it does so without the feature f100 being contained
in the inventory. There is nothing arcane about this: in effect it is similar to
recognizing that a language can have an exponent for ‘[feminine,plural]’ if it

7 Maximal differentiation is also not a requirement for every language. Famously, although
there are many ways to define the case paradigms for Russian nominals, there is no paradigm
that is maximally differentiated in Russian—all Russian case paradigms have some measure
of syncretism (Jakobson 1936/1971; see Bobaljik (2002) for some implications of this old
observation).
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has the features [feminine] and [plural], without positing a special “feature”
[fempl].

Before presenting the results, a few further remarks are perhaps in order
about our notation and assumptions. The following subsection is an aside in
terms of the logic of the argument to be given, but readers may find it useful
in understanding the feature system a little more clearly. Any of a number
of other conditions could be expressed in our system. The next paragraphs
present some conditions on inventories that we could, but do not, explore
in this paper. These remarks are to make explicit what we do not assume,
alongside what we do, but also serve to show how our notation can expresses
various common ideas in the literature.

2.5 Further conditions
Privativity v. Binarity

Our features are, by definition, privative, rather than binary, in the sense
that these terms are understood in the morphological and phonological liter-
ature. Binary features, of the sort typically written [±F] are, in our terms,
names for pairs of features: a feature that names a set of cells, and another
feature that names the complement set. In our terms, feature binarity could
be expressed by holding that if f1100 is a feature in some inventory, then f0011
is also a feature in that inventory, etc. We accord no special status to pairs of
features in this way: an inventory containing f0011 may or may not contain the
complement as a second feature; we impose no general restriction that it do
so. (In at least some cases, including two- and three-cell paradigms, imposing
binarity complicates the analysis).

Defaults
A default feature (or value) is one that is compatible in principle with all

cells, i.e., f111.... Like binary feature pairs, we consider full sets of inventories,
including those that do and do not contain the default. The default feature
has no special status at the outset – it is simply one feature among many
to be considered. Again, we will largely allow the computation to determine
whether accounts with default features are in some way more or less restrictive
than corresponding accounts without.

Containment
Much of the ABA literature relies on partial or total containment among

classes of features in an inventory. The Nanosyntax framework codes this as
an fseq, assumed to be universal and invariant across languages (Caha 2009).
Other ABA literature (Bobaljik 2012) assumes containment in the contexts
where ABA is excluded, but without a total commitment to invariant fseqs.
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In any event, we have seen how feature containment relations are expressed
in our notation, as in (5). The fseq assumption would then elevate that to a
general condition: for any two features fa, fb in an inventory, either fa ⊂ fb or
fb ⊂ fa. Once again, we do not impose a priori conditions of this sort, as our
aim is to see whether these arise from other considerations.

3 Two-Cell Paradigms
Consider first the case of paradigms with two cells. Analysis of a two-cell
paradigm space is relatively trivial, but serves as a warm up for the more
interesting cases, and offers an opportunity to become more familiar with the
notation for presenting the analysis.

For the analysis of a two-celled paradigm space, there are three logically
possible features: f10, f01, and f11 – this corresponds to the general formula
that for n-cells there are 2n−1 possible features. From three features, eight dis-
tinct inventories of features may be defined, i.e., the power set of the features.
Of these, we may discard the empty set - if there are no features, nothing can
be described.

Of the seven remaining inventories, any inventory consisting of just a sin-
gle feature will fail our criterion of Validity: The maximally differentiated
partition of a two-celled paradigm space is AB, i.e., the two cells are distinct.
Since our features are privative, a single feature is not sufficient to analyze the
AB paradigm: If the single feature is f11 it isn’t possible to make the required
distinction between the A and the B cell – the only m-partition that could be
analyzed is AA. And if the single feature was either f10 or f01, no analysis of the
two cell paradigm is possible at all. Only one cell could receive an exponent.
Recall that we made the decision not to assign the ‘default’ f11 some special
status but to include it as just one possible feature among many. Therefore if
only a rule of exponence f10 7→ A is specified, the second cell wouldn’t be filled
at all. Therefore this analysis fails to be valid under (15). This shows that at
least 2 features are required to analyze the AB paradigm.

That two features are sufficient is shown by looking at Table 1. This table
displays the four inventories with two or three features. For each inventory,
the set of possible rules of exponence are given (redundant features are in
parentheses), and in the rightmost column, the corresponding partitions that
can be generated. As the table shows, any selection of two features from
the three possible features will allow an analysis of the AB-paradigm. Thus
these three subsets represent possibilities for a restrictive Universal Grammar
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# inventory sequence partition
1 f01, f11 f11 AA

f11,( f01) AA
f01, f11 AB

f01 **
2 f10, f11 f11 AA

f11,( f10) AA
f10, f11 AB

f10 **
3 f10, f01 f10, f01 AB

f01, f10 AB
f01 **
f10 **

4 f10, f01, f11 f10, f01,( f11) AB
f01, f10,( f11) AB
f10, f11,( f01) AB
f11,( f01, f10) AA

f01 **
f10 **

Table 1 Table of valid feature inventories and corresponding partition sets
for two-cells. ** = incomplete sequence

satisfying Minimality — the three-feature inventory (#4) is excluded by this
criterion.

Recall from above that we defined a model as an inventory (set) of active
features plus a sequence of rules of exponence. Thus each inventory in the
table predicts multiple grammars (models) to be possible, each corresponding
to some sequence of rules of exponence. The Table compresses each sequence
(including incomplete ones or ones containing redundant features) to a single
line.

Inventory #1 is valid, since there is a model containing this inventory,
which generates the maximally differentiated partition AB. This model is in the
third line: there are two, ordered rules of exponence ( f01 7→ B, and f11 7→ A).
As the table shows, the AA partition may also be generated from the same
inventory. The first sequence provides a rule of exponence only for the feature



16 Bobaljik & Sauerland

f11. This generates the fully syncretic paradigm: AA. Continuing through
the table, we see in this way that the first and the second possible universal
inventory each allow two classes of languages corresponding to the partitions
AA and AB. The third feature inventory, although Valid and Minimal, only
predicts the AB partition as possibility. On this analysis AA would never
surface, except as the result of accidental homophony.

The fourth inventory contains all three features and therefore allows 6
sequences with rules of exponence for 3 features, 6 sequences with 2 features,
and 3 with single features, which we show in a condensed form in 1. However,
as noted, this inventory fails the Minimality condition.

Typological evidence or learning experiments ultimately can inform us
which partitions are attested. If a typological survey shows that both AA
and AB patterns exist, then the the third inventory, though valid and min-
imal, is not the actual inventory made available by UG. We note in passing
that it is the only minimal valid analysis that uses a binary feature, rather
than a default and “marked” combination.

However, the typological evidence cannot alone decide between different
inventories that both predict the same possible partitions like inventories #1
and #2 above.

Despite the relatively trivial nature of the exercise with the two-cell paradigm
space, the preceding discussion demonstrates that assumptions have conse-
quences, and the the assumption that UG inventories be both minimal and
valid has reduced the space of possible inventories from 7 (or 8 with the empty
set) to 3. We have shown how typological evidence can be brought to bear on
the choice. Finally, we note that the two minimal valid inventories that are
capable of generating both AA and AB patterns are in fact linear permutations
of one another. Since we have taken the linear order of the paradigm cells to
be arbitrary, there is no way to resolve this choice further on our assumptions.

Our first result is that in a paradigm space that constitutes only a binary
opposition, the minimal valid analysis is one that takes UG to have a single
feature that names one member of the opposition, and which is contrasted with
a default feature, compatible with both members. In this way, there would be
an empirically-grounded argument to be made that if Minimality is assumed,
then Binarity should be rejected as a general condition on feature inventories.
in the manner just noted, the two assumptions make contrasting predictions
about the state of the world. But we have no way on these considerations
alone of saying which member of the opposition is ‘marked.’

Before moving on, we introduce one other aspect of notation that we will
use again later in the paper. In the following we use a more compact and in-
tuitive way to display inventories, possible valid sequences and the predicted
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# inventory sequences partitions

1

2

3
count 3 2

Table 2 Graphical display of table of minimal valid two-cell inventories and
derivation of the predicted partitions.

partitions by representing the features, exponents, and partitions as vertical
sequences of squares. In Table 2, we display the three valid systems that con-
tain the minimal number of features, i.e., two features, in the two-cell case in
this way. As we have already discussed, while there are three such distinct
feature inventories, inventory 1 and inventory 2 predict the same sets of pos-
sible partitions. But inventory 3 predicts a smaller set of possible partitions,
namely only the AB partition.

4 Three-Cell Paradigms
Turning to the three-cell paradigm space, we begin to see the growth in the
space of analytical possibilities, and we also see how various assumptions such
as Minimality and intrinsic, i.e., Pāṇinian ordering restrict that space. For a
three-cell paradigm space, there are 23−1 = 7 possible features, listed in (18):

(18) f100
f010
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f001
f110
f101
f011
f111

If features could be freely chosen to form inventories, then 128 distinct feature
inventories could in principle be constructed from these features (including the
empty set).

Validity
The first restriction we impose is Validity, as in (15). For example, the

inventory f100, f010, f001 is valid, in that it describes a three-way contrast, while
the inventory f100, f110, f010 is invalid - it is not complete, and thus provides
no means to describe the third cell. It turns out that 96 of the 128 possible
inventories of active features are valid in this sense in the three cell case (see
table 3 below). With four cells, the ratio is 31 962 out of 32 768 (see table 5
below). Validity thus restricts the number of feature sets, but the restriction
is not particularly strong.

Minimal Feature Inventory
The more interesting (and less obviously empirically motivated) require-

ment is Minimality. As defined above, a minimally valid feature inventory is an
inventory that contains the minimal number of features needed to describe the
maximally differentiated partition. For the two-cell space, the minimality re-
quirement does not restrict the possibilities in any interesting way (it excludes
only one inventory out of 8), but for the three-cell space, the minimal number
of features that is needed to describe the maximally differentiated partition is
two, as we show presently. Validity plus Minimality together thus restrict the
choice from among 128 different logically possible feature inventories to the
following three:

(19) a. f110, f101
b. f101, f011
c. f110, f011

No other combinations of two (or fewer) features generates the ABC array.
(20) gives the rules of exponence that generate <ABC> from the inventory in
(19-c), showing that two features are sufficient to satisfy Validity:

(20) a. f110 ∩ f011 = f010 7→ B
b. f110 7→ A
c. f011 7→ C
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In order to describe the ABC pattern, the Rules of Exponence must be (par-
tially) ordered, such that the exponent of the conjoined features takes prefer-
ence over the rules in (20)b-c (this holds for any of the three inventories in
(19)). The property of Order was not relevant in the two-cell paradigm, and
so we make a brief digression to discuss it here.

Order
Because each of the inventories in (19) has two basic features that may be

conjoined to define a third feature, the number of possible sequences for each
inventory is 16, although many of these sequences will be redundant.8 (20)
illustrates one order. Other orders of the rules will yield syncretic partitions
(paradigms). If the order of the first two rules in (20) is exchanged, then the
rule in (21-a). will assign the exponent A to the first two cells, bleeding rule
(21-b) (i.e., rendering rule (21-b) redundant), and yielding the partition AAC.

(21) a. f110 7→ A
b. f110 ∩ f011 = f010 7→ B
c. f0111 7→ C

As a general property (well understood from studies of Rule Ordering), or-
dering fa before fa ∩ fb will render the conjunction redundant, and is thus
equivalent to not selecting (or having no rule referencing) the conjoined fea-
ture. This corresponds to an intrinsic order: if the conjoined rule is active, it
must be ordered before its individual conjuncts.

If the conjoined rule is omitted or not ordered first, then the order between
the two rules referring to the basic features matters. Such ordering is extrinsic
and must be stated explicitly. (22) yields AAC while (23) yields ACC. In both
examples, the conjoined rule is ranked non-initially and these models are thus
indistinct from corresponding models lacking the intersection rule.

(22) a. f110 7→ A
b. f011 7→ C
c. f110 ∩ f011 = f010 7→ B

(23) a. f011 7→ C
b. f110 7→ A
c. f110 ∩ f011 = f010 7→ B

The following table shows, for one inventory, the six possible models (six dis-
tinct orders of three rules) and the three corresponding partitions that are
derived. (As before, redundant elements in the sequences are in parentheses).

8 The total number of arrangements of a set with n elements: a(n) = n∗a(n−1)+1, a(0) = 1.
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The analogous table for the other two choices can be readily constructed. As
an expository device, we use green text to indicate a feature that is derived
as the intersection of the two basic features. As explained in Section 2.5, the
green features are not part of the feature inventory, but are a convenient ab-
breviation for rules of exponence that make reference to the intersection of
two features in their structural description.

(24)

inventory sequences partition
f110, f011 f010, f110, f011 ABC

f010, f011, f110 ABC
f110,( f010), f011 AAC
f110, f011,( f010) AAC
f011,( f010), f110 ACC
f011, f110,( f010) ACC

3

What (24) shows is the following: There are (only) three minimal valid feature
inventories that can generate a maximally differentiated three-celled paradigm
space. One such inventory is { f110, f011}. From that inventory, 6 (= 3!) se-
quences may be formulated, where each sequence is a distinct, total ordering
of rules of exponence for the two features and their intersection.9 While there
are six rule orderings possible, only three distinct partitions are generated.
The first two lines in (24) derive the same surface patterns (partitions), since
the ordering of the last two rules is irrelevant.

As the reader may verify, the other two minimal valid inventories (in (19-a)
have the same properties as (24). The three inventories amount to permu-
tations in the order of the cells, but are otherwise identical in their formal
properties.

The information in (24) is represented graphically in (25):

9 If non-total sequences are included, there are 15 possibilities, but the additional sequences
are either incomplete, or indistinct from the sequences in (24) which have redundant rules.
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(25)

universal features realizations partition

4.1 Result: *ABA
At this point, we note two properties we believe to be of theoretical interest.
For a three-celled paradigm space, there are B3 = 5 distinct partitions. How-
ever, imposing the conditions of Validity and Minimality on the UG feature
inventories restricts the expressive power of the system, such that each inven-
tory generates only 3 of the 5 possible partitions, and the three so generated
are moreover linear permutations of one another. We believe this is of interest
since it appears to be true at least in some domains that the number of at-
tested partitions is a small subset of the logically possible ones. The example
we noted above was that in the 8 cell division of the person/number space, only
60-some-odd distinct partitions, out of B8 = 4,140 possibilities, are attested
in Cysouw’s 250+ language sample. Being able to predict restrictions on the
space of possibilities is thus of potential theoretical interest, if the restrictions
indeed line up with the data. In the case at hand, the following restrictions
obtain:

Of the five possible partitions of a three-cell spaced, four show some differ-
entiation among the cells. However, each of the inventories in (19-a) generates
only three of those partitions. As in the case of inventory #3 in the two-celled
paradigms, we are now able to connect our formal results to potential empiri-
cal evidence. If there is, as we have hypothesized, a fact of the matter for some
domain, such that UG contains only one of the inventories in (19-a), then this
should show up as the following empirical generalization: across the relevant
domain, only three of the four possible patterns of differentiated partition
should be attested. In (24), we show that the inventory f110, f011 generates
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the partition set <ABC, AAB, ABB>; that inventory does not generate ABA.
No sequence from that inventory will generate a pattern in which the first and
last cell share an exponent, to the exclusion of the middle cell. The same holds
for the other two inventories, up to linear order: each inventory will fail to
generate exactly one of the possible partly syncretic partitions.

This result is noteworthy in the current context, since it provides a means
of characterizing the absence of *ABA patterns without assuming featural
containment. Existing accounts of *ABA patterns (refs) are all built on what,
in our terms, is a non-minimal feature structure, with strict nesting of features
– some version of: f100, f110, f111.

In other words, what we have just shown has two parts. The easy part is
a demonstration that it is possible to derive a *ABA generalization for some
domain without invoking containment. We have just done so. The slightly
harder part was the demonstration that the type of feature inventory that
derives *ABA without containment is not only possible, but is in fact preferred
(over containment), if UG makes use of Minimally Valid feature inventories.
We postpone until the next section some speculative remarks on whether this
result constitutes a plausible alternative scenario for the account of *ABA
generalization examples in the literature.

Before that discussion, we note one further point about these inventories.
No valid, minimal inventory for a 3-cell paradigm space generates the maxi-
mally undifferentiated partition AAA. Curiously, it is not a general property of
our assumptions that such undifferentiated partitions are universally excluded
in the minimally valid inventories, rather, they are excluded for paradigms
where the number of cells is 3,7,15,. . ., i.e., 2n −1. We note this, but leave it
as an unexplored aspect of the system. Total syncretism appears to exist, of
course, and we do not exclude it across the board.

4.2 More on the 3-cell space: Pāṇini revisited
Thus far, we have examined only the three minimally valid inventories that
generate a three-cell paradigm. In the previous section, we were able to present
a complete discussion of all the possible inventories and of the partition sets
described by each inventory. There were only 8 possible inventories for the
features definable over a two-cell paradigm, and 4 inventories were invalid.
But for a three cell space, there are 128 inventories, and numerous sequences
to consider.

Table 3 provides a summary of important aspects of the grammar of three-
celled paradigms and the models that generate them. In the next paragraphs,
we walk through this table in some detail, identifying various properties that
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are of potential interest. Among these, we note that imposing Pāṇinian order-
ing — limiting all models to intrinsic rule ordering — turns out to have rather
drastic consequences.

Table 3 is divided horizontally into two halves. Each half tabulates all
the valid feature inventories, and counts inventories grouped by the number of
features they contain (y-axis) × the partition sets that may be generated from
them (x-axis). The two halves of the table differ as follows: In the top half, it
is assumed that extrinisic order of rules of exponence is permitted, while in the
bottom half, we add the additional assumption that only intrinsic (Pāṇinian)
ordering is permitted. We discuss the differences below.

The columns in Table 3 represent possible partition sets of a three-cell
paradigm space, using colour instead of letters, as in (25) above: the same
colour in two cells indicates the same exponent (syncretism). There are B3 = 5
distinct partitions (the rightmost column) and 16 different subsets of partition
that contain the maximally differentiated partition (ABC = red, pink, yellow).

The header of each column represents a distinct partition set, and the
number in a given column represents the number of formally distinct (valid)
inventories that can in principle generate that set. In the leftmost column of
the line “3 features, order”, one finds the number 1. Assuming extrinsic rule
ordering is allowed, there is exactly one choice of an inventory with three fea-
tures, from among the 7 possible features, which yields only an ABC partition.
We have seen that already; it was the inventory in (3). If that inventory is
chosen, from among the 128 possible inventories, then the only partition that
can be generated is ABC.

On the same line, the number in the rightmost column is 3. There are (ex-
actly) three distinct choices of feature inventories from each of which all five
logically possible inventories can be derived. One such inventory is f110, f101, f111,
i.e. it is derived from a valid two-feature inventory by adding the total default
f111. The other two inventories are also of this type.

This line also shows that there are 3-feature inventories that generate a
partition set which excludes ABA. For example, the 5th columnn from the right
notes that there are three inventories whose partition sets contain ABC, AAB,
ABB, and AAA, but not ABA. One of the three inventories which generate
this partition set is f001, f011, f111 as we saw above already (the containment
inventory). A second possibility is f100, f110, f111 (a linear permutation of the
previous one). Finally, also the inventory f100, f001, f111 generates this partition
set. Furthermore, all three inventories exclude *ABA from their corresponding
partition set regardless of whether extrinsic ordering is allowed or not.

Bear in mind that the numbers in this table do not count models or se-
quences, but count inventories. Other than those in the leftmost column, each



24 Bobaljik & Sauerland

2
fe
at
ur
es
,o

rd
er

–
–

–
–

–
–

1
–

–
–

1
–

1
–

–
–

3
fe
at
ur
es
,o

rd
er

1
–

2
–

2
–

3
3

2
–

3
3

3
3

1
3

4
fe
at
ur
es
,o

rd
er

–
–

1
–

1
–

3
2

1
–

3
2

3
2

3
14

5
fe
at
ur
es
,o

rd
er

–
–

–
–

–
–

1
–

–
–

1
–

1
–

3
15

6
fe
at
ur
es
,o

rd
er

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1
6

7
fe
at
ur
es
,o

rd
er

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
1

to
ta
lw

ith
or
de
r

1
–

3
–

3
–

8
5

3
–

8
5

8
5

8
39

2
fe
at
ur
es
,P

āṇ
in
i

3
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

3
fe
at
ur
es
,P

āṇ
in
i

4
–

4
–

4
–

–
3

4
–

–
3

–
3

1
3

4
fe
at
ur
es
,P

āṇ
in
i

–
–

3
–

3
–

1
2

3
–

1
2

1
2

3
14

5
fe
at
ur
es
,P

āṇ
in
i

–
–

–
–

–
–

1
–

–
–

1
–

1
–

3
15

6
fe
at
ur
es
,P

āṇ
in
i

–
–

–
–

–
–

–
–

–
–

–
–

–
–

1
6

7
fe
at
ur
es
,P

āṇ
in
i

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
1

to
ta
lP

āṇ
in
i

7
0

7
0

7
0

2
5

7
0

2
5

2
5

8
39

Table 3 Table showing which 12 of the 16 logically possible three cell par-
tition sets that can be generated by feature systems and by how
many.



25

valid inventory in the table may be contained in multiple models, thus yielding
sets of generable partitions. As a concrete example, all of the information in
(24) (=(25)) is here coded by the number 1 in the top line, column 11. From
the feature inventory in (24), all and only the three partitions at the top of
the column (ABC, ACC, AAC) can be generated; moreover, this is the only
choice of (two) features which generates that exact partition set (and requires
extrinisic rule ordering to do so).

Results
The three minimal valid inventories that we have discussed above are in the

top row of the top half of the table. These are the only three valid, two-feature
inventories.

One point of interest is that there are four partition sets that are underiv-
able: four columns total to zero (in fact the same four with or without a limita-
tion to Pāṇinian ordering). As the second column shows, there is, for example,
no valid inventory (minimal or otherwise) that admits all and only the maxi-
mally and minimally differentiated partitions (ABA, AAA). Also excluded are
patterns that allow ABC, AAA and exactly one 2:1 grouping (columns 4, 6,
10).

This latter fact is particularly interesting, since the last of these (column
10) is what Bobaljik (2012) finds empirically for suppletion in adjective grada-
tion: ABA and AAB are unattested, but the other patterns are allowed. Our
result means that the suppletion pattern of gradation isn’t predicted by any
variation of the morphological assumptions we consider here – i.e. whether
Pāṇini, Minimality or similar condition is assumed. However, Bobaljik also
proposes to separate the component accounts of *ABA from *AAB in adjecti-
val gradation, arguing that only *ABA is excluded by the logic of features and
syncretism, and proposes an additional, syntactic locality condition to exclude
*AAB (see also Bobaljik & Wurmbrand 2013).

Pāṇini
Before leaving the domain of three-cell paradigm spaces, we will consider

the effect of one additional restriction, namely the idea that there is no extrinsic
ordering of rules, and only Pāṇinian ordering. Each of the three valid, minimal
feature inventories makes use of two basic overlapping features, and derives a
third by the intersection of those two. We showed above that reordering the
rules has the effect of deriving syncretic patterns, in effect, by rendering the
intersective feature redundant. The order in (21-a) is equivalent to a system
that uses only the two basic features, but not their conjunction.

We may consider imposing Pāṇinian-order-only as a restriction on valid
sequences, corresponding to the hypothesis that grammars make use of only
intrinsic, but not extrinsic, ordering of rules. Comparing the top and bottom
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halves of Table 3 allows us to evaluate the effects of this assumption, for three-
celled paradigms.

One result which we find interesting is that for 3-cell paradigms, imposing
Pāṇinian ordering has no effect on the total number of valid inventories. (This
turns out to be different for 4-celled paradigms). We simply note this here,
without further comment.

However, comparing the first line of each half of the table shows that im-
posing Pāṇinian ordering in addition to Minimality is a severe restriction. This
constellation of assumptions has the effect that only the maximally distinct
partition is describable (the leftmost column in Table 3). All three valid min-
imal inventories will derive that order and no other. Technically, intrinsic
ordering does not restrict the relative order of f110 and f011, but since the
conjunction will identify the middle cell, the remaining ordering is free (the
two are non-distinct).

Since syncretism is abundant in paradigms of all sizes, imposing a Pāṇinian
ordering, along with the other assumptions considered above, seems patholog-
ically over-restrictive.

5 Beyond three cells
As we move beyond a three-cell space, the system grows and changes in various
ways. Unlike the two- and three-cell spaces, we will not walk through all
examples in as much detail, but will call attention to various points and provide
some more general discussion in the abstract.

A three-cell paradigm space allows for 23−1= 7 features, and thus 27 = 128
logically possible inventories. We showed in the previous section that Validity
reduces that set to 96 and Validity plus Minimality further reduces the number
of contenders to 3 feature inventories. By countenancing arbitrary ordering
of the rules of exponence (sequences), each of the three minimally valid in-
ventories generates 3 of the B3 = 5 partitions of a 3-member set: none derives
the undifferentiated partition. Adding Pāṇini as a restriction reduces that
further: from the three minimal valid feature inventories, only one partition
can be generated–the maximally differentiated partition.

The four-cell case allows B4 = 15 partitions (paradigms) including the max-
imally differentiated partition. Logically, 2B4−1 = 16384 different valid parti-
tion sets exist. If there were no constraints on feature inventories or rules of
exponence, this is the number of possible states of the world that we could
investigate typologically, to ask which is the actual state. This number is so
large that the answer to the question which of these subsets can be derived
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from how many valid feature systems cannot be visualized in the same way as
in table 3. To be able to still compare the three and the four cell results, we
report therefore comparable summary statistics for both the three cell case in
Table 4 and the four cell case in Table 5. In the three cell case, the values
shown in table 4 can be mostly read off from the table in 3. The first column
shows the size of the sets of features under consideration, ranging from the
minimum number such that there is a valid feature set of that size to the size
of the set of all features, i.e. 2c −1 where c is the number of cells. The second
column shows the number of subsets of that size whether valid or not, i.e.
the binomial coefficient

( 2c−1
#features

)
. The next column lists how many of these

features sets are valid inventories. This corresponds to the sum over the values
of the corresponding row in table 3 – recall that valid feature sets are valid
regardless of whether order is extrinsic or intrinsic. The penultimate column
indicates how many different ordered partition sets (OPSs) can be derived
from the valid feature sets. This corresponds to the number of non-zero en-
tries in the corresponding row of table 3. The last column shows the number
of Pāṇinian partition sets derivable from the valid Inventories. The last row of
table 3 gives the values for feature sets of any size. The number of inventories
and that of valid inventories in the last row are the sum of the entries for
feature sets of a specific cardinality because there can’t be any overlap. But
the paradigm sets can overlap – a paradigm set is derivable from a three fea-
ture inventory can in some cases also be derived from a four feature inventory.
Therefore the values in the last row of the #PPS and #OPS columns aren’t
the column sums.

#features #Inventories #validInventories #OPS #PPS
0 1 0 – –
1 7 0 – –
2 21 3 3 1
3 35 29 12 9
4 35 35 11 11
5 21 21 5 5
6 7 7 2 2
7 1 1 1 1

any 128 96 12 12

Table 4 Summary statistics of logically possibly three cell partitions
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For the four-cell paradigm space, the picture changes drastically. This is
largely because describing a four cell space requires at least three features (as
we show below). The table corresponding to table 4 for four cells is shown
as table 5. We computed the table using an Apple Macbook Pro Laptop
computer (2012 model) running a program in the R programming language
(R Core Team 2012) that tests all the feature sets for validity (computer code
available). The total computation time amounted to several hours.

#features #Inventories #validInventories #OPS #PPS
0 1 0 – –
1 15 0 – –
2 105 0 – –
3 455 140 116 47
4 1 365 1 015 317 239
5 3 003 2 793 347 402
6 5 005 4 935 310 420
7 6 435 6 425 240 369
8 6 435 6 435 160 279
9 5 005 5 005 99 193
10 3 003 3 003 54 112
11 1 365 1 365 25 61
12 455 455 12 24
13 105 105 6 6
14 15 15 2 2
15 1 1 1 1
any 32 768 31 692 361 463

Table 5 Summary statistics of logically possibly four cell partitions

The results for the four-cell systems differ noticeably from the three-cell
case in terms of the effect of the Panini assumption and the overall restric-
tiveness. The biggest difference is that in the three cell case the minimal
inventories contain 2 features, but for four cells a least 3 features are required.
Validity and Minimality are about equally restrictive, but in relation to the
256 times greater set of feature sets. This leaves 140 minimal valid feature
inventories. Unlike the three-cell space, where adding Pāṇini eliminated the
possibility for variation, in the four-cell space, Pāṇinian sequences allow 47
distinct possible partition sets, each of which generates between 1 and 7 of
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the B4 = 15 distinct partitions of a 4-celled space. None generate more than 7
partitions. The occurrence of the number 47 – a prime number – in the table
is, we think, noteworthy: It might indicate that even though the concept of
a Pāṇinian sequence is a straightforward mathematical concept, the concept
leads to some irreducible formal complexity. We include a display of these 47
paradigm sets as an appendix.

A second main difference concerns the relation between the order-sensitive
partition sets (OPSs) and Pāṇinian ones (PPSs) from (13). In the three cell
case, the OPS and PPS were overall the same. But with four cells, sequences
with extrinsic order and Pāṇinian sequences predict different restrictions on
the paradigm sets. As shown by the last line of table 5, the Pāṇini assumption
allows slightly more variation – 463 paradigm sets are generable with Pāṇinian
sequences, while only 361 are compatible with extrinsically ordered systems.10
We furthermore computed the amount of overlap between the OPSs and PPSs.
We found that the union of OPSs and PPS contains 557 partition sets, and
therefore 267 are both OPS and PPS, 94 are only OPSs, and 196 are only
PPSs. Some examples are shown in table 6: the first three rows show three of
the 267 partition sets that are both OPSs and PPSs. The second block of three
rows shows three that are only PPSs, and the third block shows two that are
only OPSs. The last block illustrates with two examples the 15 827 partition
sets that cannot be generated by a feature based morphological system unless
additional restrictions are introduced.

Overall feature-based analyses are surprisingly restrictive in the four-cell
case. Of the 16 384 logically possible subsets of paradigms, only fewer than
3.5% are compatible with a feature based approach, 15 827 logically conceivable
typological states are ruled out. Pāṇini’s assumption is even slightly more
restrictive, allowing less than 3% of all possible sets of partitions. This is
surprising since the feature assumption and also the Pāṇini assumption only
ruled out 4 of 16 paradigm sets in the 3 cell cases, i.e. 75% of the paradigm
sets are compatible. Even assuming minimal Pāṇini-systems turns out to be

10 It may seem counter-intuitive that systems that allow any order of rules generate less vari-
ation than systems which are limited only to Pāṇinian rule orders. In terms of individual
partitions, since Pāṇinian orders are a (proper) subset of the orders that are statable as
extrinsic orders, Pāṇinian systems will not generate fewer partitions than those with unre-
stricted ordering. But what we count here is not the partitions that are generated, but the
partition sets. In general, allowing extrinsic order will mean that the partition set genera-
ble from a given inventory will be a superset of the set generable from the same inventory
with only Pāṇinian order (as mentioned in note 6). The numbers above reflect the effect
that there is more convergence among the larger sets: with unrestricted rule ordering, more
distinct inventories converge on the same partition sets than in the case of restricted rule
ordering, overall.
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partition set features (with order) features (Panini)

1: 57, e.g.

88, e.g. 90, e.g.

1024, e.g. 128, e.g.

0 32, e.g.

0 2, e.g.

0 128, e.g.

2, e.g. 0

12, e.g. 0

0 0

0 0

Table 6 Examples of four-cell partition sets with the number of ordered
and Panini analyses and example feature systems
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more restrictive in the four cell than in the three cell case, allowing less than
0.3% of the paradigm sets with four cells compared to 1 of 16 with three cells.
The numerical comparisons need to be taken into account when evaluating
feature based morphological theories against typological data since the more
restrictive a constraint is the less likely it is that is satisfied by chance.

In many ways, the constraints imposed by feature systems on universal
grammar are at this point difficult to grasp concretely, though future formal
work may find a way to do so. We explore therefore a four cell version of the
*ABA constraint, *ABBA (see Caha 2009; Smith et al. 2016 for empirically-
based proposals that exclude this pattern). There are two other permutations
of the ABBA partition, ABAB and AABB. We investigated therefore which
partition sets containing all three of ABBA, ABAB and AABB, as well as
ABCD, can be generated from feature and Pāṇini systems. There are 211, i.e.
2 048 such feature sets, but only 41 of them can be generated by feature sys-
tems. Of those, 21 can be generated with either ordered or Pāṇinian systems,
and a further 10 each with either only an ordered or only a Pāṇinian system.
The examples in the third and fifth row of table 6 illustrates two such systems.
The system in row three predicts 13 partitions and can be generated from only
three features if order is allowed. But if Pāṇini’s restriction is obeyed, at least
six features are necessary to generate this system. Row 5 shows an ABBA-
system with the smallest number of features required to be generated in a
Pāṇinian way, namely 4. So in the Pāṇini case, ABBA-systems require more
than the minimal number of features as we also found for ABA-systems.

To conclude this section, consider briefly the seven cell paradigm. Because
both 3 and 7 have 2n−1 cells for some n, the structures of the two paradigms
are similar. The minimal number of features of a valid inventory for a seven
cell paradigms is three. Any set of three features fa, fb, and fc where each
basic feature contains 4 cells, each conjunction of two features contains 2, and
the conjunction of all three features contains 1 cell is valid. There are 7!= 5040
such systems, and all have the same structure except for permutations of the
cells. One system is shown in (26) along with its order-sensitive partition set
(OPS) – like in teh 3-celled paradigm space, only the maximally differentiated
paradigm is possible with Pāṇini sequences. It is noticeable that of the 61
generable partitions in the OPS none contains only A and B – only paradigms
with at least a three-way partition are possible. Since all OPSs are identical
except for cell-permutations, we can derive in this way a *AB constraint for
seven cell paradigm spaces. If there are such spaces, we make at least this
typological prediction.
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6 Discussion
6.1 *ABA - empirical considerations
Coming up out of the heady sea of numbers for air, we are now at a point
to step back and ask whether the results of our investigation of the formal
combinatorics of features has any bearing on the actual *ABA generalizations
discussed in the literature. Our tentative conclusion is that some domains
where a *ABA generalization is observed do not seem to conform to the pro-
file of a Minimal Valid Inventory, while for others, the situation is less clear,
and the Minimal Valid Inventory, with overlapping features, rather than con-
tainments, seems to us to be a direction worth pursuing.

We opened this article with reference to the *ABA generalization in adjec-
tival gradation, investigated extensively in Bobaljik (2012). We see no reason
from the discussion here to think that it would be profitable to reanalyze that
as arising from a Minimally Valid Feature Inventory. Doing so would invoke
two privative features, one shared by the positive and comparative grade (but
not the superlative), and another shared by the comparative and superlative,
but not the positive. There is, however, fairly extensive evidence independent
of patterns of suppletion for a containment relation in adjectival gradation: the
superlative transparently contains the comparative in many languages. Some
examples are given here (from Bobaljik 2012:31):

(26)
pos cmpr sprl

a. Persian: kam kam-tar kam-tar-in ‘little’
b. Cimbrian: šüa šüan-ar šüan-ar-ste ‘pretty’
c. Czech: mlad-ý mlad-ší nej-mlad-ší ‘young’
d. Hungarian: nagy nagy-obb leg-nagy-obb ‘big’
e. Latvian: zil-ais zil-âk-ais vis-zil-âk-ais ‘blue’
f. Ubykh: nüs◦ə ç’a-nüs◦ə a-ç’a-nüs◦ə ‘pretty’



33

In addition, it is not at all obvious that it makes sense to consider adjectival
degrees as grammatical features, in the way that, for example, classificatory
elements such as gender are.

On the other hand, there are other domains in which *ABA generalizations
have been observed, where there is less independent reason to think that the
constituent elements are arranged in a containment relation.

One such domain, perhaps, is person. Vanden Wyngaerd (2016) sees an
*ABA generalization in (plural) independent pronouns. Building on prior
cross-linguistic investigations (Cysouw 2003; Baerman et al. 2005), he observes
that there are languages where first and second (plural) pronouns are syn-
cretic, contrasting with the third person (such as Slave, in (27), from Cysouw
2003:124), and there are languages where second and third (plural) are syn-
cretic, contrasting to the first person (as in the Nez Perce ‘unmarked’ pronouns
in (28), Cysouw 2003), but virtually no good examples of syncretism of first
and third person, contrasted with second.11

(27)

sg pl
1 sį naxį
2 nį naxį
3 ?edį ?egedį

(28)

sg pl
1 ’íin núun
2 ’íim ’imé
3 ’ipí ’imé

Vanden Wyngaerd (2016) argues for a containment relation among the features
that define person, as in the following:12

(29) a. 1st : [[[person] participant] author]
b. 2nd: [[person] participant]
c. 3rd: [person]

In our terms, this is (a linear permutation of) the inventory in (5): f100, f110, f111
and its properties are well understood. However, there are few, if any, lan-
guages in which such a decomposition of pronouns is transparently manifest in
surface forms. As we have seen above, this inventory is valid, but non-minimal.

11 In bound person marking (agreement) more patterns are attested, though of varying fre-
quency (Cysouw 2003, 2010).

12 This is one of the current prominent views about the decomposition of person features in
the literature; see for example: Sauerland (2008); Zeijlstra (2015). For contrasting views,
see Bobaljik (2008); Harbour (2016).
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A Minimal Valid inventory would be one that composes the three persons out
of two privative features: f110 corresponding to the feature ‘participant’, and
f011, which is in essence the privative feature ‘non-author’. On this alternative
analysis, first and third person pronouns cannot be syncretic, excluding the
second person, since they share no feature. Hence *ABA.

In work in progress (see Sauerland & Bobaljik 2013) we are exploring the
typology of syncretism in person feature systems more broadly, drawing on
the extensive data in Cysouw (2003), to determine what feature system has
the maximum likelihood of underlying the observed partition sets, not just in
plural pronouns, but in the full range of person marking systems, including
clusivity distinctions. We may wager that if we are right to suspect a Minimally
Valid Inventory at work in the patterns of syncretism in the free-standing
pronouns, then we will see that emerge as well in the larger study.

Before closing, we note as well that *ABA generalizations have also been
noted in verbal inflection (Wiese 2008; Starke 2009), case (Caha 2009; Smith
et al. 2016), and number (Smith et al. 2016). Of these, case is another domain
in which there is minimal independent morphological evidence for containment
relations, at least among ‘core’ cases.13

Pavel Caha (personal communication and this volume) calls our attention
to at least one sub-part of the case hierarchy which appears to reflect the kind
of feature structure we would expect on the approach taken here. Blansitt
(1988) surveys the marking of the following four functions across the world’s
languages: direct object, dative (recipient), allative (goal of motion), and lo-
cation. Blansitt notes a generalization, exceptionless in transitive clauses,
whereby no two functions are marked identically unless all intervening func-
tions in the order just given are also marked identically. In other words, a
*AB(B)A generalization. One way to approach this, following Caha (2009)
(but see also Caha & Pantcheva 2012), would be to assume that there is a
monotonic containment relationship among the features (we consider the last
three for ease of exposition):

(30) a. f111 = dative
b. f011 = allative
c. f001 = locative

An alternative, following the approach laid out here, would be the minimal
valid inventory in (31):

13 Caha (2009); Smith et al. (2016) report some examples of, e.g., dative built on accusative,
etc., but these are surprisingly rare, in contrast to, e.g., what we find with adjectival grada-
tion. For spatial/locative cases, there is a much richer amount of transparent embedding;
see Comrie & Polinsky (1998); Radkevich (2010); Pantcheva (2011).
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(31) a. f110 = dative
b. f011 = locative

From this inventory, the allative can be described as the intersection of the
other two cases. As Caha notes, Blansitt offers at least one language that
seems to transparently reflect (31) rather than (30). Tigrinya prepositions
include ne which marks dative (and some objects, presumably an instance of
differential object marking, which quite commonly uses the dative, Bossong
1985) and locative ab. The allative is marked by the conjunction of the two:
nab < ne ab. This is also broadly consistent with the results of Radkevich
(2010) who found no evidence of a simple, monotonic transparent relationship
among local cases as (30) might predict (although her survey also finds cases of
portmanteaus and internally complex case morphology that are equally hard
to reconcile with (31)).

We note also that as paradigms grow, the type of representation enter-
tained here readily accommodates multi-dimensional syncretism, a prima fa-
cie challenge for theoretical approaches, such as Nanosyntax, which adopt a
universal total (containment) ordering among features (see Caha & Pantcheva
2012 for ideas on how to extend the Nanosyntax model to accommodate this.)
We have throughout represented paradigms as one-dimensional lists, as in (32),
although one often finds four-celled paradigms presented as a 2×2 matrix, en-
coded as two binary features, as in (33).

(32) <A,B,C,D>

(33)
−α +α

−β A B
+β C D

Translation is straightforward: the feature−α in (33) is encoded relative to the
list in (32) in our terms as f1010, +β as f0011, etc. But horizontal and vertical
syncretisms have no a priori special status — we can just as readily define
a feature f1001 which picks out cells A and D, a diagonal syncretism in (33).
For us, this flexibility is an advantage, since it allows us to take any existing
partition set and probe what the optimal underlying feature inventory might
be, given any combination of assumptions such as binarity, Pāṇinian order,
Minimality etc. Rather than setting the features ahead of time, we can in this
way discover whether features should be binary or not.

Consider in this light the first line of the third block in Table 6. The par-
tition set contains 9 of the B4 = 15 logically possible partitions of the four
cell space. If we map the lists in the partition set to a binary table as in
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(33), we may observe that this partition set contains partitions correspond-
ing to horizontal and vertical syncretisms (the third and fifth partition sets,
respectively), but no diagonal syncretisms. If this partition set is what we
observe typologically (i.e., all attested paradigms correspond to one of these
9 partition sets), does this indicate that the inventory should contain binary
features? Evidently not, since the feature inventory that generates this par-
tition, given in the second column, does not contain binary features. It is
a minimally valid inventory, containing the three features in (34) (and thus
allowing the intersection of the first two in the Rules of Exponence):

(34) a. f0101
b. f0011
c. f1111
d. ( f0101 ∩ f0011 = f0001)

In Sauerland & Bobaljik (2013), we note that four the four-cell paradigm
space corresponding to the first person (inclusive vs. exclusive × singular vs.
plural), 9 of the 15 possibilities are indeed attested (Cysouw 2003), and a
feature inventory along these lines provides the optimal analysis of the space
of typologically attested possibilities.

Without probing deeper, we hope to have shown that the derivation of
*ABA generalizations entertained here may indeed get off the ground in some
domains, leaving for future work the fuller empirical investigation of this ap-
proach.

Why Minimality?
Finally, returning to the question we raised at the outset, we may step back

even further and ask why UG might have the types of constraints it does. We
are obviously far from an answer, but can add a few, very tentative remarks
here.

To this point, we have assumed that it is reasonable to think that UG
feature inventories respect a condition of Minimality, and have shown how
this assumption restricts the hypothesis space to be considered in determin-
ing the actual feature inventory corresponding to paradigms of a given size.
Minimality has a somewhat different flavour than some of the other restrictive
assumptions we have entertained. In principle, one could think of this from a
different perspective. Rather than imposing a condition of Minimality on in-
ventories, one could imagine instead that the features are whatever they are,
but that UG shows maximal use of the features it has. For a domain with
two features, UG generates in principle a three-celled space: each feature on
its own, plus their intersection. This builds in the assumption of minimal-
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ity - and thus means that all true three-celled paradigms are those projected
from the two-feature inventories, yielding the *ABA prediction (up to linear
permutation).

This alternative (maximal use of minimal resources), implies that there
should be no four, or five-celled paradigms. If there are two features (in a given
domain) then the maximal paradigm in that domain will have three cells. If
there are three features, then the paradigms generated will have 7 cells. The
appearance of a four-celled paradigm in some domain then necessarily involves
syncretism.
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Appendix: The 47 Four Cell Pāṇinian Partition Sets (PPPs)

47 Generative Parameter Spaces for Four Cells 
 U. Sauerland and J. Bobaljik
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